
Associate Directorate for Theory, Simulation, and Computation (ADTSC) LA-UR 10-0199298

Lo
s

Al
am

os
 N

at
io

na
l L

ab
or

at
or

y

Given the scale of massively parallel systems, system failures are
not a matter of if, but of when. When an inevitable system

failure takes place, it is not viable to restart the calculation from
the beginning, particularly if such an application (e.g., a complex
simulation) has been running for a month or so. Thus, massively
parallel applications rely on checkpointing, which consists of saving
snapshots of the current state of an application into files on per-
sistent parallel storage systems. After a failure, users can restart the
application from the most recent snapshot.

At present, concurrent and random-access checkpoint writes to a
shared file require unnecessary 1) disk-seeking, and 2) file-locking
at the parallel storage system. Such requirements drastically reduce
bandwidth by as much as two orders of magnitude. To overcome
this problem, we developed software known as Parallel Log-
structured File System (PLFS), which decouples concurrent access

and reorganizes logical writes into
sequential physical writes, thus
enabling applications to write in
parallel at a near-optimal storage
bandwidth.

PLFS works as follows: For every
logical PLFS file created, PLFS
creates a hierarchical directory
structure, called a PLFS container,
on the underlying parallel storage
system. Hidden from users, this
container consists of a single top-level
directory and multiple subdirectories
that contain the actual file data.
To build a logical view of the file,

PLFS uses the data and metadata within the container to implement
a virtual interposition, or intermediate, layer. Multiple processes
opening the same logical file for writing share the container,
although each opening receives a unique data file within the
container into which all of its writes are appended. By giving each
writing process in a parallel application access to a nonshared data
file, PLFS transparently converts write-access patterns to improve
checkpoint bandwidth by as much as several orders of magnitude.

Figure 1 shows how PLFS reorganizes a N-1 checkpoint file onto
an underlying parallel system. The processes create a new file on
PLFS called checkpoint1, causing PLFS in turn to create a contained
structure on the underlying parallel file system. The figure also
shows the access file, which is used to store ownership and privileged
information about the logical file, the openhosts, and the metadata
directories, all of which are use to cache metadata to improve query
time.

File systems have two basic checkpointing patterns: N-N and N-1.
An N-N checkpoint is one in which each of a certain number of
processes (N) writes to a unique file, for an equal number of files
written (N processes = N files written). An N-1 checkpoint differs

PLFS: A Checkpoint Filesystem for Parallel
Applications
John Bent, HPC-5; Garth Gibson, Carnegie Mellon University; Gary Grider, HPC-DO;
Ben McClelland, HPC-3; Paul Nowoczynski, Pittsburgh Supercomputing Center;
James Nunez, Milo Polte, Meghan Wingate, HPC-5

Fig. 1. How PLFS rewrites a
checkpoint file.

Fig. 2. These bars show the speedup in write bandwidth for eight
different applications and two synthetics benchmarks. Note that the
y-axis is logscale.

openhosts/ subdir3/accesssubdir2/subdir1/

P3 P4

N2

P5 P6

N3

P1 P2

N1

A parallel application consisting of six processes on three compute nodes creates an N!1 strided file, checkpoint1.

PLFS preserves the application’s logical view of the file.

logical view ofcheckpoint1

PLFS creates a container structure on the underlying parallel file system to hold the data for file checkpoint1.

index.N1 index.N3

metadata/

index.N2

PLFS Virtual Interposition Layer

Actual Underlying Parallel File System

checkpoint1/

Information Science and Technology

www.lanl.gov/orgs/adtsc/publications.php 99

in that all N processes write to a single shared file. Although both
N-N and N-1 patterns pose challenges, we have observed that the
challenges of N-1 checkpointing, from the perspective of the parallel
storage system, are much more difficult. Applications using N-1
patterns consistently achieve significantly less bandwidth than do
those using an N-N pattern. Because N-N checkpointing derives
higher bandwidth than N-1, the path to faster checkpointing is
for application developers to rewrite existing N-1checkpointing
applications to perform N-N checkpointing instead. Additionally, all
new applications should be written to take advantage of the higher
bandwidth available to N-N checkpointing. Some developers have
gone to N-N checkpointing, but many continue to prefer an N-1
pattern even though its disadvantages are well understood.

Of the 23 applications listed on the Parallel I/O Benchmarks, an
industry standard developed by the Parallel I/O Benchmarking
Consortium, at least 10 have an N-1 pattern. Two major
applications at LANL use an N-1 checkpointing pattern, as do
at least two of the eight initial applications chosen to run the
Laboratory’s Roadrunner, the world’s first petascale computer. The
parallel storage system attached to Roadrunner is the largest the
Laboratory has ever had; testing it has revealed that the challenges
of N-1 patterns are severely exacerbated at this scale. Given current
bandwidths, we know of no current N-1 application at LANL that
can effectively checkpoint across the full width of Roadrunner.
PLFS, currently mounted on Roadrunner and many other
Laboratory systems, allows them to do so (Fig 2). More generally,
PLFS achieves this improvement for any parallel writes and not just
checkpoint writes. PLFS also has been shown to improve bandwidth
for many parallel reads.

The theory underlying this work is that concurrent, random-access
checkpoint writes to a shared file require unnecessary disk-seeking
and file locking at the parallel storage system, thereby drastically
reducing bandwidth. By decoupling concurrent access and by
reorganizing random logical writes into sequential physical writes,
PLFS enables applications to write in parallel at a near-optimal
storage bandwidth.

In addition to observing a large performance
improvement at the Laboratory, which uses the
Panasas ActiveScale (PanFS) storage system, we have
also tested PLFS on the two other most widely used
storage systems for supercomputing: the Linux cluster
storage system (Lustre) and GPFS, the IBM General
Parallel File system. We have demonstrated a 25X
speedup on GPFS, an 8X speedup on Lustre, and a
3000X speedup on PanFS. Notice that the Lustre and
GPFS experiments were run on very small clusters.
Extrapolating the trends and comparing with the
PanFS results suggests that speedups for GPFS and
Lustre on reasonably sized clusters will be similar to
the PanFS results.

Figure 3 shows the impact of PLFS on three different parallel
storage systems: GPFS, Lustre, and Panasas (PanFS). In each graph,
the y-axis shows the write bandwidth controlled by the number of
concurrent writers on the x-axis. The red lines show the bandwidth
for N-N workloads, and the blue lines are the bandwidth for
small, strided N-1 workloads (strided being a type of regular access
pattern).

Notice that all three storage systems show massive performance
degradation for these N-1 workloads. The green lines are the
performance of these same N-1 workloads as written through PLFS.
PLFS allows the application to use its preferred N-1 workload and
achieve close to the bandwidth it would have achieved if using an
N-N workload. For Lustre and GPFS, the N-1 bandwidth through
PLFS is much better than the N-1 bandwidth directly to the storage
system, but it is not as good as the N-N bandwidth.

For Panasas, however, N-1 through PLFS does match the N-N
bandwidth. Notice that the x-axes are very different. The GPFS
and Lustre results were gathered on small clusters of fewer than 50
nodes, whereas the Panasas results come from a cluster of several
thousand nodes. We expect that the PLFS results on Lustre and
GPFS will match N-N bandwidths for larger-sized clusters.

GFPS

Lustre

PanFS

For more information contact
John Bent at
johnbent@lanl.gov

Funding Acknowledgments
• National Science Foundation (NSF)
• DOE, NNSA Advanced Simulation and Computing (ASC) Program
• DOE, Scientific Discovery through Advanced Computing
 Program (SciDAC)

